
A Dynamic Graph-based Malware Classifier
Hossein Hadian Jazi, and Ali A. Ghorbani

Faculty of Computer Science, University of new Brunswick

Problem Statement

.

Proposed System

Proposed System Evaluation
To evaluate the proposed system, the large number of benign and malicious executable has been collected from five well-
known sources: Ether dataset, Malicia dataset, Virus total repository, Virus share and Virus sign. The collected dataset contains
9850 benign executables and 40000 malicious binaries form 346 different families.

Dynamic FCG Generation Algorithm Graph Matching & Classifier

 The anti-virus industry receives a
sheer amount of new malware
samples on a daily basis. The
prevalence of new sophisticated
instances, for most of which no
signature is available, coupled with
the significant growth of potentially
harmful programs have made the
adoption of an effective automated
classifier almost inevitable.

 Due to the vast majority of
obfuscation techniques employed
by malware authors, the extraction
of a high level representation of
malware structure is required.
Control flow graphs (CFGs) and
function call graphs (FCGs) are the
most common abstract
representations of an executable.
These graphs provide distinctive
characteristics of a binary that is
identifiable over strains of malware
variants.

 Both CFGs and FCGs have been
widely used as basic components
of most malware detection
approaches. However, these
methods suffer from the following
limitations:
 Resort to static analysis to

generate CFG and FCG graphs
mostly by employing PE-Explorer
or IDA Pro disassemblers. The
static analysis can easily be
bypassed in obfuscated cases
such as using packers. To
alleviate this drawback some of
the approaches have used
unpacker tools to remove the
obfuscated layer of the
executable before disassembling
it. However, most of them are
limited to a fixed set of known
packers or are restricted by the
fidelity of the emulation
environment.

 Scalability of the approaches is
affected by the employed graph
comparison algorithm.
Unfortunately full-graph
comparison and computing the
largest common sub-graph, are
computationally hard, which
makes the scalability of a system
questionable.

 The static approaches cannot
handle on-line streams of
malicious executables due to their
off-line classification or clustering
algorithms.

 To make our method scalable, we adapt an graph edit
distance approximation algorithm called Simulated
Annealing to improve the accuracy of the system while
maintaining low computational complexity.

 we follow an approximate classification algorithm called
nearest prototype classification which includes three steps:
Prototype extraction, clustering and classification. Our
classification is applied incrementally and graphs are
processed in chunks. This significantly reduces the run-
time and memory requirements of our system

Our contribution

We devise a new algorithm to generate dynamic function call graphs since static

algorithms are not suitable to generate dynamic graphs. The algorithm works as

follow:

 For the first instruction, create a function object at the address of that

instruction.

 For each call statement or push + ret, create a function object and add an

edge from the current function to this new function object.

 For each new call statement, create or reuse a function object and add an

edge from the current function to the new or already known function object.

 After a ret instruction, change the current function to the previous one.

 Employing dynamic analysis to
generate dynamic CFG and FCG.

 Devising a new algorithm to
generate dynamic FCGs.

 Improving the simulated annealing
algorithm to compute similarity
between graphs by employing
stochastic beam search concept. It
improves the accuracy of the
classification while maintaining low
computational complexity.

 Developing an on-line stream
clustering algorithm for clustering
streams of FCGs.

Dynamic 
Analyzer

Preprocessor

Classifier

Graph 
Generator

GED 
Calculator

Phase 1: Graph Generation

Phase 2: Graph Matching

Phase 3: Classification

Trace Files Assembly Files

Distances

Malware Binaries

Graphs

0

20

40

60

80

100

120

D
yn

am
ic

-S
A

St
at

ic
-S

A

St
at

ic
 (

U
n

p
ac

ke
r)

 -
SA

D
yn

am
ic

-S
A

St
at

ic
-S

A

St
at

ic
 (

U
n

p
ac

ke
r)

 -
SA

D
yn

am
ic

-S
A

St
at

ic
-S

A

St
at

ic
 (

U
n

p
ac

ke
r)

 -
SA

D
yn

am
ic

-S
A

St
at

ic
-S

A

St
at

ic
 (

U
n

p
ac

ke
r)

 -
SA

D
yn

am
ic

-S
A

St
at

ic
-S

A

St
at

ic
 (

U
n

p
ac

ke
r)

 -
SA

day1 day 2 day 3 day 4 day 5

P
ER

C
EN

TA
G

E

Accuracy False Positie Number of Rejected Samples

0
10
20
30
40
50
60
70
80
90

100
P

ro
p

o
se

d
 S

ys
te

m

C
la

ss
y 

U
si

n
g 

St
at

ic
 G

ra
p

h
s

C
la

ss
y 

U
si

n
g 

D
yn

am
ic

 G
ra

p
h

s

P
ro

p
o

se
d

 S
ys

te
m

C
la

ss
y 

U
si

n
g 

St
at

ic
 G

ra
p

h
s

C
la

ss
y 

U
si

n
g 

D
yn

am
ic

 G
ra

p
h

s

P
ro

p
o

se
d

 S
ys

te
m

C
la

ss
y 

U
si

n
g 

St
at

ic
 G

ra
p

h
s

C
la

ss
y 

U
si

n
g 

D
yn

am
ic

 G
ra

p
h

s

P
ro

p
o

se
d

 S
ys

te
m

C
la

ss
y 

U
si

n
g 

St
at

ic
 G

ra
p

h
s

C
la

ss
y 

U
si

n
g 

D
yn

am
ic

 G
ra

p
h

s

P
ro

p
o

se
d

 S
ys

te
m

C
la

ss
y 

U
si

n
g 

St
at

ic
 G

ra
p

h
s

C
la

ss
y 

U
si

n
g 

D
yn

am
ic

 G
ra

p
h

s

day 1 day 2 day 3 day 4 day 5

Accuracy False Positie Rejected Samples

System Performance Comparative Evaluation


